
Robotics Fundamentals
(Level-1)

ROBOTICS FUNDAMENTALS (LEVEL-1)
Course Code: -- Credits: --

CIE Marks: 90

Exam Hours: 03 SEE Marks: 60

Course Learning Outcome (CLOs): After Completing this course successfully, the
student will be able to…

CLO Learning Outcome

CLO 1
Explain the basics of robotics, including history, components, and

applications.

CLO 2 Select and integrate sensors (e.g., IR, ultrasonic) for robotic systems.

CLO 3 Interface actuators (e.g., motors, servos) with robotics hardware.

CLO 4 Write and debug basic Arduino programs for robot control.

CLO 5 Develop IoT-enabled robots for remote monitoring and control.

CLO 6 Understand and apply robotic motion planning and kinematics.

CLO 7 Design and build robotic systems through hands-on projects.

CLO 8
Implement advanced sensors, feedback mechanisms, and vision systems in

robots.

CLO 9 Communicate and document robotic projects effectively.

SUMMARY OF COURSE CONTENT

Textbooks:

• "Introduction to Robotics: Mechanics and Control" by John J. Craig

• "Robotics: Everything You Need to Know" by Peter McKinnon

Additional References:

• "Arduino Cookbook" by Michael Margolis

• "Modern Robotics: Mechanics, Planning, and Control" by Kevin M. Lynch

Serial

No.
SUMMARY OF COURSE CONTENT Hours CLOs

1 Introduction to robotics: history, components, and applications 3 CLO 1

2 Selecting and integrating sensors (e.g., IR, ultrasonic) for robotic systems 4 CLO 2

3 Interfacing actuators (e.g., motors, servos) with robotics hardware 4 CLO 3

4 Writing and debugging basic Arduino programs for robot control 6 CLO 4

5 Developing IoT-enabled robots for remote monitoring and control 6 CLO 5

6 Robotic motion planning and kinematics 5 CLO 6

7 Designing and building robotic systems through hands-on projects 8 CLO 7

8 Implementing advanced sensors, feedback mechanisms, and vision systems in robots 6 CLO 8

9 Communicating and documenting robotic projects effectively 3 CLO 9

ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Lab Participation
(10)

Assignments
(10)

Quizzes
(10)

Remember 05
Understand 05
Apply 05

Analyze 05

Evaluate 05 05

Create

Bloom's Category Test

Remember

Understand

Apply 10

Analyze

Evaluate

Create 10

CIE- Continuous Internal Evaluation (30 Marks)

SEE- Semester End Examination (20 Marks)

COURSE PLAN
Week Topics

Teaching-Learning

Strategies

Class

Hour

Practice

Hour

Assessment

Strategy

Mapping with

CLOs

01
Introduction to Robotics: Understand the fundamentals

of robotics and its components.

Lecture, Interactive Q&A,

Demos
5h 3h

Participation, Short

Quiz
CLO 1

02
Sensors in Robotics: Ability to select appropriate sensors

for specific tasks.

Lecture, Hands-on with IR,

ultrasonic sensors
5h 3h

Practical

Assignment
CLO 2

03
Actuators in Robotics: Skills in integrating actuators with

robotic systems.

Hands-on with motors,

servos
5h 3h Lab Report CLO 3

04
Programming Basics for Robots: Ability to write and

debug simple robot control programs.

Coding tutorial, Arduino

programming
5h 3h Coding Exercise CLO 4

05-06
IoT Integration for Robots: Proficiency in developing

IoT-enabled robot systems.

Hands-on IoT integration

with robots
10h 6h

IoT Implementation

Test
CLO 5

07
Introduction to Robotic Kinematics: Understanding

motion dynamics in robot design.

Lecture, Simulation

exercises
5h 3h Quiz, Lab Task CLO 6

08-09
Mini Robot Project: Hands-on experience in small-scale

robot construction.
Guided project work 10h 6h Project Evaluation CLO 7

10
Advanced Sensors and Feedback: Ability to implement

closed-loop control in robots.

Hands-on with gyros,

accelerometers
5h 3h

Feedback System

Test
CLO 8

11
Vision Systems: Skills in integrating vision systems with

robots.

Lecture, Hands-on with

vision libraries
5h 3h

Vision Integration

Test
CLO 8

12-13
Large Robot Project Phase 1: Project planning and initial

prototyping skills.

Guided prototyping

sessions
10h 6h Prototype EvaluationCLO 7

14-15
Large Robot Project Phase 2: Hands-on experience in

deploying a complete robotic system.
Implementation and testing 10h 6h

Project

Demonstration
CLO 7

16
Project Presentation: Communication and documentation

skills.

Peer review, Presentation

session
5h 1h

Presentation

Assessment
CLO 9

17
Final Assessment: Evaluation of overall knowledge and

practical skills.
Written test, Practical exam 5h

Comprehensive

Evaluation
CLO 1-9

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 16

LAB EXPERIMENTS

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 17

LAB EXPERIMENT 1

 Determination of maximum and minimum position of link

AIM: To determine the maximum and minimum position of links

Materials Required:

 A robotic arm or a similar mechanical system with interconnected links

 Position sensors (Ex. Encoders, potentiometers) to measure the position of each link

 A computer or data acquisition to measure the physical position of the links

 A ruler or tape measure to measure the physical position of the links

 A set of weights or other objects to load the system and test its limits

Pre-Experiment Questions

1. What is a link in a mechanism

2. Why is it important to determine the maximum and minimum positions of links in a mechanism?

Procedure:

1. Install the position sensors on each link of the robotic arm, following the manufacturer's instructions

or previous lab notes. Make sure that the sensors are calibrated and provide accurate readings.

2. Connect the position sensors to the computer or data acquisition system and configure the software

to collect and store the position data.

3. Identify the maximum and minimum range of motion of each link, based on the physical constraints

of the system and the specifications of the sensors. For example, if the robotic arm has six links and

each link can rotate up to 180 degrees, the maximum range of motion of each link would be from -90

to +90 degrees.

4. Start with one link and move it slowly from the minimum position to the maximum position, while

recording the position data. Repeat the process a few times to ensure consistency and repeatability of

the measurements.

5. Plot the position data on a graph, with the position on the y-axis and time or angle on the x-axis.

Identify any trends or patterns in the data, such as non-linearities, oscillations, or saturation points.

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 18

6. Repeat the process for all the links of the robotic arm, one by one or in parallel, depending on the

available equipment and resources. Make sure to record the data and analyse it using appropriate

statistical or mathematical tools.

7. Load the system with additional weights or other objects to test its limits and see how it behaves

under different loads. Repeat the measurements and analysis as before, and compare the results to

the unloaded case.

8. Evaluate the accuracy and precision of the measurements and the limitations of the experimental

setup. Consider possible sources of error or uncertainty, such as sensor noise, measurement drift, or

mechanical hysteresis, and try to minimize or correct for them.

Formula:

Calculate the maximum and minimum positions of each link relative to the reference link using the

following formulae:

 Maximum Position = length pf link x sin (angle between links)

 Minimum Position = length pf link x sin (180-angle between links)

Results:

The laboratory experiment should provide a quantitative and qualitative assessment of the maximum

and minimum position of the links of the mechanical system under study. The position data can be

used to calculate the range of motion, the velocity and acceleration profiles, and other relevant

parameters of the system. The loaded tests can also reveal the dynamic behaviour and the robustness

of the system under various operating conditions. The results can be compared to the theoretical

models or simulations of the system, if available, or used to improve the design and performance of

the system in practice.

Post-Experiment Questions:

1. What are the materials required to determine the maximum and minimum positions of links in

a mechanism

2. How do you calculate the maximum and minimum positions of a link

3. What is the purpose of creating a graph of the maximum and minimum positions of each lin

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 19

LAB EXPERIMENT 2

Verification of transformation (position and orientation) with respect to gripper
and world coordinate system

Aim

To verify the transformation (position and orientation) with respect to gripper and world coordinate
system

Equipment Required:

 Robot arm with a gripper

 Markers

 Camera System

 Computer with control software and computer vision software

Pre-experiment Questions

1. What is the purpose of this experiment?

2. What are the potential applications of this experiment in robotics?

3. What equipment is required for this experiment?

Procedure:

1. Set up the robot arm in the laboratory, with the gripper attached to the end effector.

2. Place the markers at known positions in the laboratory workspace. These markers should be visible

to the robot's camera system.

3. Use the robot's control software to move the gripper to various positions and orientations in the

workspace, recording the position and orientation of the gripper for each movement.

4. Use the robot's camera system to capture images of the markers in the workspace, and use computer

vision techniques to calculate the position and orientation of the markers in the gripper's coordinate

system.

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 20

5. Use the recorded gripper positions and orientations, along with the marker positions and orientations

in the gripper's coordinate system, to calculate the transformation matrix between the gripper and the

world coordinate systems.

6. Verify the accuracy of the transformation matrix by comparing the calculated positions and

orientations of the markers in the world coordinate system to their known positions.

7. Repeat the experiment for different gripper positions and orientations to test the robustness of the

transformation matrix.

8. Finally, use the verified transformation matrix to program the robot arm to perform various tasks,

such as picking up and moving objects in the workspace

RESULT:

Thus we verified the transformation (position and orientation) with respect to gripper and world
coordinate system

Post- Experiment Questions

1. What are markers and why are they used in this experiment?

2. How do you calculate the transformation matrix between the gripper and the world
coordinate systems?

3. How do you verify the accuracy of the transformation matrix?

4. What is the significance of testing the robustness of the transformation matrix?

5. How can the verified transformation matrix be used in programming the robot arm?

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 21

LAB EXPERIMENT 3

Estimation of accuracy, repeatability and resolution
AIM:

To determine estimation of accuracy, repeatability and resolution

Equipment required:

 Measurement instrument (e.g. ruler, caliper, scale)

 Representative samples of the measurement variable

 Spreadsheet or data analysis tool
Pre-Experiment Questions

1. What is the purpose of this experiment?

2. What are measurement variables and why are they important in this experiment?

3. What equipment is required for this experiment?

Procedure:

 Set up the experimental apparatus in the laboratory.

 Define the measurement variables that will be used to estimate accuracy, repeatability, and
resolution.

 Select a representative set of measurement points that span the range of values of the
variables.

 Make measurements at each of the selected measurement points, using a precise
measurement instrument.

 Repeat the measurements at each point multiple times to estimate repeatability.

 Compare the measured values to the true values, if known, or to a reference standard to
estimate accuracy.

 Determine the resolution by measuring the smallest change in the variable that can be
detected by the measurement instrument.

 Analyze the measurement data to calculate the accuracy, repeatability, and resolution.
Theory:

 Experimental Apparatus: The experimental apparatus should be designed to be as precise
and accurate as possible for the given measurement variables. For example, if measuring the
length of an object, a high-precision ruler or caliper should be used.

 Measurement Variables: The measurement variables should be carefully selected to

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 22

represent the critical aspects of the experiment. For example, in a material strength test, the
measurement variables may include tensile strength, yield strength, and fracture toughness.

 Measurement Points: Select measurement points that span the range of values of the
variables to get a representative estimate of accuracy, repeatability, and resolution.

 Measurement: Make measurements at each of the selected measurement points, using a
precise measurement instrument. Record the measured values in a spread sheet or data
analysis tool.

 Repeatability: Repeat the measurements at each point multiple times to estimate
repeatability. Calculate the mean and standard deviation of each set of measurements.

 Accuracy: Compare the measured values to the true values, if known, or to a reference
standard to estimate accuracy. Calculate the difference between the measured value and the
true/reference value.

 Resolution: Determine the resolution by measuring the smallest change in the variable that
can be detected by the measurement instrument. This can be done by gradually increasing or
decreasing the value of the variable until a change is no longer detected.

 Data Analysis: Analyze the measurement data to calculate the accuracy, repeatability, and
resolution. Calculate the mean and standard deviation of the measurements, and compare
them to the true/reference values. Calculate the smallest detectable change in the variable to
estimate resolution.

RESULT:

Thus we determined the estimation of accuracy, repeatability and resolution

Post- Experiment Questions

1. How do you select the representative set of measurement samples?

2. What is repeatability and how is it estimated in this experiment?

3. What is accuracy and how is it estimated in this experiment?

4. What is resolution and how is it determined in this experiment?

5. How do you analyze the measurement data to calculate the accuracy, repeatability, and

resolution?

6. What are the potential sources of error in this experiment?

7. How can the results of this experiment be used to improve the accuracy and precision of

future measurements in the laboratory

8.

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 23

LAB EXPERIMENT 4

Robot Programming and simulation for pick and place
AIM:

To do the Robot Programming and simulation for pick and place

Materials Required:

 Arduino UNO or equivalent

 Servo motors (2 or more)

 Ultrasonic sensor

 Breadboard and jumper wires

 USB cable

 Computer with Arduino IDE software installed

Pre-Experiment Questions

1. What is the purpose of the Servo library in this code?

2. What is the purpose of the buttonPin variable in this code?

3. What is the purpose of the motorPin variable in this code?

Procedure:

Step 1: Build the robot arm

 Build the robot arm using servo motors and other materials.

 Connect the servo motors to the Arduino UNO board and make sure they are properly mounted.

Step 2: Connect the ultrasonic sensor

 Connect the ultrasonic sensor to the breadboard and Arduino board.

 Connect the power, ground, and signal pins of the sensor to the appropriate pins on the board.

Step 3: Program the Arduino

 Open the Arduino IDE software on your computer.

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 24

 Write a code to control the robot arm and ultrasonic sensor.

 The code should instruct the robot arm to move in a certain direction when the ultrasonic sensor

detects an object at a certain distance.

 Use the Servo library to control the servo motors and the NewPing library to read the ultrasonic

sensor.

 Verify and upload the code to the Arduino board.

Step 4: Test the robot arm

 Power up the Arduino board and run the program.

 Test the robot arm by placing objects within the range of the ultrasonic sensor and observing how it

responds.

 You can adjust the code to make the robot arm move in a certain way depending on the position of

the object.

Step 5: Simulate the robot arm

 To simulate the robot arm, you can use a software tool like Tinkercad or SolidWorks.

 Create a virtual model of the robot arm and connect it to a virtual Arduino board.

 Write a code to control the virtual robot arm and simulate its movement based on the inputs from the

virtual ultrasonic sensor.

 Test and refine the code until the virtual robot arm is able to perform the desired tasks.

Code using Arduino:

#include <Servo.h>

Servo servoX;

Servo servoY;

const int buttonPin = 2;

const int servoXPin = 9;

const int servoYPin = 10;

const int motorPin = 3;

int buttonState = 0;

void setup() {

 pinMode(buttonPin, INPUT);

 pinMode(motorPin, OUTPUT);

 servoX.attach(servoXPin);

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 25

 servoY.attach(servoYPin);

}

void loop() {

 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH) {

 // move to pick up position

 servoX.write(90);

 servoY.write(45);

 delay(1000);

 // activate motor to pick up object

 digitalWrite(motorPin, HIGH);

 delay(500);

 digitalWrite(motorPin, LOW);

 delay(500);

 // move to drop off position

 servoX.write(0);

 servoY.write(90);

 delay(1000);

 // activate motor to drop off object

 digitalWrite(motorPin, HIGH);

 delay(500);

 digitalWrite(motorPin, LOW);

 delay(500);

 }

}

RESULT:

Thus we completed the Robot Programming and simulation for pick and place

Post-Experiment Questions

1. What is the purpose of the delay function in this code? Can it be replaced with other
functions?

2. How would you modify this code to pick up and drop off objects at different position

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 26

LAB EXPERIMENT 5

Robot Programming and simulation for colour identification

AIM: To do the robot programming and simulation for colour identification

Connecting the Hardware:

1. Install the Arduino Nano at Breadboard
2. Connect the Nano 5V output and GND at both Power Rails
3. Connect the TSC3200 Sensor as bellow:

 S0 ==> Nano pin D4
 S1 ==> Nano pin D5
 S2 ==> Nano pin D6
 S3 ==> Nano pin D7
 OUT ==> Nano Pin D8
 EN ==> GND
 VCC ==> +5V
 GND ==> GND

4. Connect the I2C LCD 2/16 Serial Display:
 SDA ==> Nano Pin A4
 SCL ==> Nano Pin A5

Pre-Experiment Questions

1. What is an RGB color sensor and how does it work

2. How does the Adafruit_RGBLCDShield library work in Arduino

3. Can you explain how the program controls the LED based on the color detected by the sensor

Arduino Code:

The first thing to define is the frequency scaling as defined at the table showed above. Pins S0 and
S1 are used for that. Scaling the output frequency is useful to optimize the sensor readings for
various frequency counters or microcontrollers. We will set S0 and S1, both in HIGH (100%):

 digitalWrite(s0,HIGH);

 digitalWrite(s1,HIGH);

Next thing to do is to select the color to be read by the photodiode (Red, Green, or Blue), we use the
control pins S2 and S3 for that. As the photodiodes are connected in parallel, setting the S2 and S3

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 27

LOW and HIGH in different combinations allows you to select different photodiodes, as showed at
above table.

 digitalWrite(s2, LOW);

 digitalWrite(s3, LOW);

 red = pulseIn(outPin, LOW); // Reading RED component of color

 digitalWrite(s2, HIGH);

 digitalWrite(s3, HIGH);

 grn = pulseIn(outPin, LOW); // Reading GREEN component of color

 digitalWrite(s2, LOW);

 digitalWrite(s3, HIGH);

 blu = pulseIn(outPin, LOW); // Reading BLUE component of color

On the final code, we will read a few times each one of the RGB components and take an average, so
we can reduce the error if one of the readings is bad.

Once we have the 3 components (RGB), we must define what color is that. The way to do it is to
previously calibrate the project. You can use a known colored test paper or object and read the 3
components generated.

void getColor()

{

 readRGB();

 if (red > 8 && red < 18 && grn > 9 && grn < 19 && blu > 8 && blu < 16) color =
"WHITE";

 else if (red > 80 && red < 125 && grn > 90 && grn < 125 && blu > 80 && blu < 125)
color = "BLACK";

 else if (red > 12 && red < 30 && grn > 40 && grn < 70 && blu > 33 && blu < 70) color
= "RED";

 else if (red > 50 && red < 95 && grn > 35 && grn < 70 && blu > 45 && blu < 85) color
= "GREEN";

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 28

 else if (red > 10 && red < 20 && grn > 10 && grn < 25 && blu > 20 && blu < 38) color
= "YELLOW";

 else if (red > 65 && red < 125 && grn > 65 && grn < 115 && blu > 32 && blu < 65)
color = "BLUE";

 else color = "NO_COLOR";

}

Here 6 colours are predefined: White, Black, Red, Green, Yellow, and Blue. As the ambient light
goes down, the parameters tend to go higher.

Inside the loop(), it is defined to display the readings at LCD each 1 second.

https://mjrobot.org/arduino-color-detection/

In simple we can do this method using Arduino and the Tinkercad simulation tool

 First, set up the circuit on Tinkercad by placing an RGB color sensor and an LED on the

breadboard, connecting them to the Arduino as shown in the following diagram

 Next, open the Arduino IDE and upload the following code to the Arduino board

Arduino Code

// Libraries

#include <Wire.h>

#include <Adafruit_RGBLCDShield.h>

#include <Adafruit_ColorSensor.h>

// Initialize the LCD

Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield();

// Initialize the color sensor

Adafruit_ColorSensor colorSensor = Adafruit_ColorSensor();

void setup() {

 // Initialize the LCD

 lcd.begin(16, 2);

 lcd.setBacklight(255, 255, 255);

 // Initialize the color sensor

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 29

 colorSensor.begin();

}

void loop() {

 // Read the color from the sensor

 uint16_t red, green, blue;

 colorSensor.getColor(&red, &green, &blue);

 // Convert the color to a string and display it on the LCD

 char colorString[16];

 sprintf(colorString, "#%02x%02x%02x", red / 256, green / 256, blue / 256);

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Color: ");

 lcd.print(colorString);

 // Control the LED based on the color

 if (red > blue && red > green) {

 // Red

 analogWrite(3, 255);

 analogWrite(5, 0);

 analogWrite(6, 0);

 } else if (green > red && green > blue) {

 // Green

 analogWrite(3, 0);

 analogWrite(5, 255);

 analogWrite(6, 0);

 } else {

 // Blue

 analogWrite(3, 0);

 analogWrite(5, 0);

 analogWrite(6, 255);

 }

 // Delay for a short time

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 30

 delay(100);

}

RESULT:

Hence we have done the robot programming and simulation for colour identification

Post-Experiment Questions:

1. How would you modify the code to detect and display the intensity of each color (red, green,

and blue) separately?

2. How would you modify the circuit to add additional LEDs that light up for different colors?

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 31

LAB EXPERIMENT 6

Robot Programming and simulation for shape identification

AIM: To do the robot programming and simulation for shape identification

1. First, set up the circuit on Tinkercad by placing an ultrasonic sensor and three LEDs on the
breadboard, connecting them to the Arduino as shown in the following diagram:

2. Next, open the Arduino IDE and upload the following code to the Arduino board

Pre-Experiment Questions

1. What is an ultrasonic sensor and how does it work?

2. How does the Servo library work in Arduino?

Arduino code:

// Libraries

#include <Servo.h>

// Initialize the servo

Servo servo;

// Initialize the LED pins

const int LED_1_PIN = 2;

const int LED_2_PIN = 3;

const int LED_3_PIN = 4;

// Initialize the ultrasonic sensor pins

const int TRIGGER_PIN = 5;

const int ECHO_PIN = 6;

void setup() {

 // Initialize the servo

 servo.attach(9);

 // Initialize the LED pins

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 32

 pinMode(LED_1_PIN, OUTPUT);

 pinMode(LED_2_PIN, OUTPUT);

 pinMode(LED_3_PIN, OUTPUT);

 // Initialize the ultrasonic sensor pins

 pinMode(TRIGGER_PIN, OUTPUT);

 pinMode(ECHO_PIN, INPUT);

 // Initialize the serial communication

 Serial.begin(9600);

}

void loop() {

 // Move the servo to scan the area

 for (int angle = 0; angle <= 180; angle += 10) {

 servo.write(angle);

 delay(100);

 // Check the distance to the nearest object
 long duration, distance;
 digitalWrite(TRIGGER_PIN, LOW);
 delayMicroseconds(2);
 digitalWrite(TRIGGER_PIN, HIGH);
 delayMicroseconds(10);
 digitalWrite(TRIGGER_PIN, LOW);
 duration = pulseIn(ECHO_PIN, HIGH);
 distance = duration / 58.2;

 // Identify the shape based on the distance
 if (distance > 0 && distance <= 5) {
 // Circle
 digitalWrite(LED_1_PIN, HIGH);
 digitalWrite(LED_2_PIN, LOW);
 digitalWrite(LED_3_PIN, LOW);
 Serial.println("Circle detected.");
 delay(500);
 } else if (distance > 5 && distance <= 10) {

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 33

 // Square
 digitalWrite(LED_1_PIN, LOW);
 digitalWrite(LED_2_PIN, HIGH);
 digitalWrite(LED_3_PIN, LOW);
 Serial.println("Square detected.");
 delay(500);
 } else if (distance > 10 && distance <= 15) {
 // Triangle
 digitalWrite(LED_1_PIN, LOW);
 digitalWrite(LED_2_PIN, LOW);
 digitalWrite(LED_3_PIN, HIGH);
 Serial.println("Triangle detected.");
 delay(500);
 } else {
 // No shape detected
 digitalWrite(LED_1_PIN, LOW);
 digitalWrite(LED_2_PIN, LOW);
 digitalWrite(LED_3_PIN, LOW);
 Serial.println("No shape detected.");
 delay(500);
 }

 }

}

Finally, run the simulation on Tinkercad and test the program by placing different shaped objects in
front of the ultrasonic sensor. The LEDs should light up to indicate the detected shape and the serial
monitor should display the shape name.

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_HCSR04.h>

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int pos = 0; // variable to store the servo position

#define trigPin 13 // define the pins for the ultrasonic sensor

#define echoPin 12

Adafruit_HCSR04 us = Adafruit_HCSR04(trigPin, echoPin); // create object for ultrasonic sensor

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 34

int dist; // variable to store the distance measured by the sensor

void setup() {

 Serial.begin(9600); // initialize serial communication at 9600 baud

 myservo.attach(9); // attach the servo on pin 9 to the servo object

}

void loop() {

 pos = 90; // set the initial position of the servo to 90 degrees (facing forward)

 myservo.write(pos); // move the servo to the initial position

 delay(1000); // wait for the servo to reach the position

 dist = us.ping_cm(); // measure the distance using the ultrasonic sensor

 Serial.print("Distance: ");

 Serial.println(dist); // print the distance to the serial monitor

 if (dist < 10) { // if an object is detected within 10 cm

 pos = 0; // move the servo to the left (0 degrees)

 myservo.write(pos);

 delay(1000);

 dist = us.ping_cm(); // measure the distance again

 Serial.print("Distance: ");

 Serial.println(dist);

 if (dist < 10) { // if an object is still detected within 10 cm

 Serial.println("Square"); // identify the shape as a square

 } else {

 Serial.println("Triangle"); // identify the shape as a triangle

 }

 } else {

 pos = 180; // move the servo to the right (180 degrees)

 myservo.write(pos);

 delay(1000);

 dist = us.ping_cm(); // measure the distance again

 Serial.print("Distance: ");

 Serial.println(dist)

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 35

 if (dist < 10) { // if an object is detected within 10 cm

 Serial.println("Circle"); // identify the shape as a circle

 } else {

 Serial.println("Unknown shape"); // identify the shape as unknown

 }

 }

}

This program uses an ultrasonic sensor to measure the distance between the sensor and an object in

front of it. A servo motor is used to rotate the sensor to different positions. If an object is detected

within 10 cm of the sensor, the servo moves to the left or right to get a better view of the object, and

the distance is measured again. Based on the distance measurements, the program identifies the

shape of the object as a square, triangle, circle, or unknown.

RESULT: Thus we have done the robot programming and simulation for shape identification

Post- Experiment Questions

1. Can you explain how the program identifies the shape based on the distance measured by the

ultrasonic sensor?

2. How would you modify the code to detect additional shapes?

3. How would you modify the circuit to add a buzzer that sounds

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 36

LAB EXPERIMENT 7

Robot Programming and simulation for machining (cutting, welding)

AIM:

To do the Robot Programming and simulation for machining (cutting, welding)

Equipment Required

 Arduino UNO board

 Motor driver shield

 Stepper motors (two or more)

 End effector (cutting or welding tool)

 Computer with Arduino IDE installed

 Breadboard and jumper wires

 Power supply (for motors and Arduino)

Pre-Experiment Questions

1. What is the purpose of the Robot Programming and Simulation for Machining (Cutting,

Welding) laboratory experiment using Arduino?

2. What components are required to build the robotic system?

Procedure

1. Design the robotic system: The first step is to design the robotic system that will be used for

machining. The design should include the number and type of motors required, the end effector

(cutting or welding tool), and any other necessary components.

2. Build the robotic system: After designing the robotic system, the next step is to build it. This

involves assembling the components and wiring them up to the Arduino board.

3. Program the Arduino board: The next step is to program the Arduino board using the Arduino IDE.

The program should include the control algorithm for the robotic system, which will be used to

control the motors and the end effector. The program should also include any necessary sensor

inputs and outputs.

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 37

4. Test the robotic system: After programming the Arduino board, the next step is to test the robotic

system. This involves running the program and observing the behaviour of the robotic system. Any

issues that arise during testing should be identified and addressed.

5. Perform machining tasks: Once the robotic system is working correctly, the next step is to perform

machining tasks such as cutting and welding. The end effector should be programmed to move in a

specific pattern, which will be used to cut or weld the work piece.

Theory:

1. Choose a robot platform: There are several robot platforms available for machining and welding.

You can choose from industrial robots, hobby robots, or even build your own robot from scratch.

Arduino is a popular platform for hobby robotics, and there are several kits available that can be

used for this project.

2. Choose a programming language: There are several programming languages that can be used to

program a robot, including C++, Python, and Java. Arduino uses a simplified version of C++, which

makes it an ideal platform for beginners. You can also use graphical programming languages like

Scratch or Blockly to program the robot.

3. Install the necessary software: You will need to install the Arduino IDE on your computer, which is

a free software that allows you to write and upload code to the Arduino board. You will also need to

install a simulation software like RoboDK, which allows you to simulate the robot movements and

check for any errors before running the program on the actual robot.

4. Write the program: Once you have chosen your programming language and installed the necessary

software, you can start writing the program. You will need to define the robot movements, such as

the cutting or welding path, and the parameters such as speed, acceleration, and direction. You can

also add sensors to detect any obstacles or errors during the process.

5. Test the program: Before running the program on the actual robot, you should test it on the

simulation software to ensure that it is working correctly. Make any necessary adjustments to the

program and repeat the testing until it is error-free.

6. Run the program on the robot: Once you are satisfied with the program, you can upload it to the

Arduino board and run it on the actual robot. Make sure that the robot is calibrated correctly and all

the safety precautions are in place before running the program.

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 38

7. Evaluate the results: After running the program, you should evaluate the results to see if it meets the

desired outcome. You can also make any necessary adjustments to the program for future use.

Arduino Code:

#include <AccelStepper.h> // Import the AccelStepper library

// Define the motor pins

#define motorPin1 8

#define motorPin2 9

#define motorPin3 10

#define motorPin4 11

// Define the end effector pin

#define effectorPin 12

// Create the AccelStepper objects for the X and Y axis

AccelStepper x_axis(AccelStepper::FULL4WIRE, motorPin1, motorPin2, motorPin3, motorPin4);

AccelStepper y_axis(AccelStepper::FULL4WIRE, motorPin1, motorPin2, motorPin3, motorPin4);

// Define the end effector object

Servo effector;

// Define the position variables

int xPos = 0;

int yPos = 0;

void setup() {

 // Set the motor speeds and acceleration

 x_axis.setMaxSpeed(2000);

 x_axis.setAcceleration(1000);

 y_axis.setMaxSpeed(2000);

 y_axis.setAcceleration(1000);

 // Attach the end effector to the pin

 effector.attach(effectorPin);

}

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 39

void loop() {

 // Move the robot to the desired position

 x_axis.moveTo(xPos);

 y_axis.moveTo(yPos);

 // Check if the motors have reached their target position

 if (x_axis.distanceToGo() == 0 && y_axis.distanceToGo() == 0) {

 // Perform the machining task (in this case, turn on the end effector)

 effector.write(90);

 }

 // Increment the position variables (for a simple example)

 xPos += 100;

 yPos += 100;

 // Delay to allow the motors to move

 delay(1000);

}

This code uses the AccelStepper library to control the stepper motors for the X and Y axis. The end

effector is controlled using the Servo library. The robot is moved to a desired position by setting the

target position for each motor using the moveTo() function. Once the motors have reached their

target position, the end effector is activated by setting its angle to 90 using the write() function. In

this example, the robot is programmed to increment its position variables (xPos and yPos) by 100

after each machining task, but these values can be changed to perform more complex machining

tasks

RESULTS:

This we have done the Robot Programming and simulation for machining (cutting, welding)

Post- Experiment Questions

1. What is the control algorithm for the robotic system?

2. What is the purpose of testing the robotic system?

3. What are some machining tasks that can be performed using the robotic system?

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 40

LAB EXPERIMENT 8

Robot Programming and simulation for writing practice

AIM:

 To do the Robot Programming and simulation for writing practice
Equipment Required

1. Arduino board

2. USB cable

3. Breadboard

4. Jumper wires

5. Servo motor

6. Writing instrument (e.g. pen, pencil)

7. Autodesk Fusion 360 or MATLAB Simulink (optional for simulation)

Pre- Experiment Questions:

1. What is the purpose of this laboratory experiment

2. What is the importance of programming and simulation in robotics

3. What is the function of the Servo library in this experiment

The Arduino board, USB cable, breadboard, and jumper wires are required to connect the servo

motor to the Arduino and program it using the Arduino IDE. The servo motor is used to control the

writing instrument (e.g. pen or pencil) to perform writing tasks. Autodesk Fusion 360 or MATLAB

Simulink can be used for simulation purposes to visualize and test the robot control algorithm before

implementing it on a physical robot.

Arduino code:

#include <Servo.h> // Import the Servo library

// Define the servo pin

#define servoPin 9

// Create the Servo object

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 41

Servo servo;

// Define the position variables

int angle = 0;

void setup() {

 // Attach the servo to the pin

 servo.attach(servoPin);

}

void loop() {

 // Move the servo to the desired angle

 servo.write(angle);

 // Increment the angle variable (for a simple example)

 angle += 10;

 // Delay to allow the servo to move

 delay(500);
}

This code uses the Servo library to control the servo motor for writing. The robot is moved to a

desired angle by setting the angle using the write() function. In this example, the robot is

programmed to increment its angle variable by 10 after each writing task, but these values can be

changed to perform more complex writing tasks.

In addition to the programming code, you can also create a simulation environment using a software

like Autodesk Fusion 360 or MATLAB Simulink to visualize and test your robot control algorithm

before implementing it on a physical robot.

RESULTS:

Thus we have done the Robot Programming and simulation for writing practice
Post-Experiment Questions

1. How does the write() function control the servo motor

2. How can this code be modified to perform more complex writing tasks

3. What is the advantage of simulating the robot control algorithm before implementing it on a
physical robot

4. What are the limitations of using Arduino for robotics

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 42

LAB EXPERIMENT 9

Robot Programming and simulation for any industrial process

(Packaging, Assembly)

AIM:

To do the Robot Programming and simulation for any industrial process

(Packaging, Assembly)

Equipment Required

1. Arduino board

2. USB cable

3. Breadboard

4. Jumper wires

5. Two Servo motors

6. Industrial equipment (e.g. packaging or assembly parts)

7. Autodesk Fusion 360 or MATLAB Simulink (optional for simulation)

Pre- Experiment Questions:

1. What is the purpose of this laboratory experiment?

2. How can robots be used in industrial processes such as packaging and assembly?

3. How does the Servo library in Arduino help control the servo motors used in this experiment?

The Arduino board, USB cable, breadboard, and jumper wires are required to connect the servo

motors to the Arduino and program it using the Arduino IDE. The two servo motors are used to

control the industrial equipment (e.g. packaging or assembly parts) to perform industrial processes.

Autodesk Fusion 360 or MATLAB Simulink can be used for simulation purposes to visualize and

test the robot control algorithm before implementing it on a physical robot.

Arduino Code:

#include <Servo.h> // Import the Servo library

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 43

// Define the servo pins

#define servoPin1 9

#define servoPin2 10

// Create the Servo objects

Servo servo1;

Servo servo2;

// Define the position variables

int angle1 = 0;

int angle2 = 0;

void setup() {

 // Attach the servos to the pins

 servo1.attach(servoPin1);

 servo2.attach(servoPin2);

}

void loop() {

 // Move the servos to the desired angles

 servo1.write(angle1);

 servo2.write(angle2);

 // Increment the angle variables (for a simple example)

 angle1 += 10;

 angle2 -= 10;

 // Delay to allow the servos to move

 delay(500);

}

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 44

This code uses the Servo library to control two servo motors for industrial processes such as

packaging or assembly. The robot is moved to desired angles by setting the angle using the write()

function. In this example, the robot is programmed to increment its first angle variable by 10 and

decrement its second angle variable by 10 after each cycle, but these values can be changed to

perform more complex industrial processes.

In addition to the programming code, you can also create a simulation environment using a software

like Autodesk Fusion 360 or MATLAB Simulink to visualize and test your robot control algorithm

before implementing it on a physical robot.

RESULTS:

Thus we have done the Robot Programming and simulation for any industrial process

(Packaging, Assembly)

Post-Experiment Questions

1. How does the write() function control the servo motors in this experiment?

2. How can the code be modified to perform different industrial processes?

3. What are the advantages of simulating the robot control algorithm before implementing it on

a physical robot?

4. What are the limitations of using Arduino for industrial robotics?

5. How can sensors be used in conjunction with this code to improve the accuracy and

efficiency of the industrial process being performed?

6. What safety measures should be taken when working with industrial robots in a laboratory or

industrial setting?

7. What is the future of industrial robotics and automation, and how might it impact the

workforce?

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 45

LAB EXPERIMENT 10

Robot Programming and simulation for multi process

AIM:

To do the Robot Programming and simulation for multi process

Equipment Required

 Arduino board
 USB cable

 Breadboard
 Jumper wires
 Two Servo motors

 Industrial equipment (e.g. packaging or assembly parts)
 Autodesk Fusion 360 or MATLAB Simulink (optional for simulation)

Pre-Experiment Questions

1. What is the purpose of this laboratory experiment?

2. How can robots be used for multiple processes in industrial automation?

3. How does the Servo library in Arduino help control the servo motors used in this experiment?

4. What safety measures should be taken when working with industrial robots in a laboratory or

industrial setting?

The Arduino board, USB cable, breadboard, and jumper wires are required to connect the servo

motors to the Arduino and program it using the Arduino IDE. The two servo motors are used to

control the tools / equipment for multiple processes. Autodesk Fusion 360 or MATLAB Simulink

can be used for simulation purposes to visualize and test the robot control algorithm before

implementing it on a physical robot.

Arduino code:

#include <Servo.h> // Import the Servo library
// Define the servo pins
#define servoPin1 9
#define servoPin2 10
// Create the Servo objects
Servo servo1;
Servo servo2;
// Define the position variables

ROBOTICS ENGINEERING & APPLICATION LAB: LC-RA- 312G

Department of R&A (2022-23) Page 46

int angle1 = 0;
int angle2 = 0;
void setup() {
 // Attach the servos to the pins
 servo1.attach(servoPin1);
 servo2.attach(servoPin2);
}
void loop() {
 // Move the servos to the desired angles
 servo1.write(angle1);
 servo2.write(angle2);

 // Increment the angle variables (for a simple example)
 angle1 += 10;
 angle2 -= 10;
 // Delay to allow the servos to move
 delay(500);

 // Switch to a new process after a certain number of cycles
 if (angle1 == 180 && angle2 == -180) {
 angle1 = 0;
 angle2 = 0;
 delay(1000);
 }
}
This code uses the Servo library to control two servo motors for multiple processes. The robot is

moved to desired angles by setting the angle using the write() function. In this example, the robot is

programmed to increment its first angle variable by 10 and decrement its second angle variable by

10 after each cycle until it reaches 180 and -180 respectively, at which point it switches to a new

process by resetting the angle variables to 0 and waiting for 1 second.

In addition to the programming code, you can also create a simulation environment using a software

like Autodesk Fusion 360 or MATLAB Simulink to visualize and test your robot control algorithm

before implementing it on a physical robot.

RESULTS:

Thus we have done the Robot Programming and simulation for multi process

	6th Robotics Level-1.pdf
	Slide 1: Robotics Fundamentals (Level-1)
	Slide 2: Robotics Fundamentals (Level-1)
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5: Course Plan

	1

