%\

Course Code: -- Credits: --

Exam Hours: 03 SEE Marks: 60

CIE Marks: 90

Explain the basics of robotics, including history, components, and
applications.

Select and integrate sensors (e.g., IR, ultrasonic) for robotic systems.
Interface actuators (e.g., motors, servos) with robotics hardware.

Write and debug basic Arduino programs for robot control.

Develop loT-enabled robots for remote monitoring and control.
Understand and apply robotic motion planning and kinematics.

Design and build robotic systems through hands-on projects.

Implement advanced sensors, feedback mechanisms, and vision systems in
robots.

Communicate and document robotic projects effectively.

Introduction to robotics: history, components, and applications 3 CLO1
Selecting and integrating sensors (e.g., IR, ultrasonic) for robotic systems 4 CLO 2
Interfacing actuators (e.g., motors, servos) with robotics hardware 4 CLO 3
Writing and debugging basic Arduino programs for robot control 6 CLO4
Developing loT-enabled robots for remote monitoring and control 6 CLOS5
Robotic motion planning and kinematics 5 CLO®G
Designing and building robotic systems through hands-on projects 8 CLO 7
Implementing advanced sensors, feedback mechanisms, and vision systems in robots 6 CLO 8
Communicating and documenting robotic projects effectively 3 CLO9

Textbooks:
. "Introduction to Robotics: Mechanics and Control** by John J. Craig
. "Robotics: Everything You Need to Know"" by Peter McKinnon
Additional References:
O, ""Arduino Cookbook'" by Michael Margolis
. 0 ""Modern Robotics: Mechanics, Planning, and Control** by Kevin M. Lynch

.

e

Understand

ENSEST |

B |
PONGCENOR B—
APDly
I |
BN |

/3

Introduction to Robotics: Understand the fundamentals Lecture, Interactive Q&A,

of robotics and its components. Demos o1
Sensors in Robotics: Ability to select appropriate sensors Lecture, Hands-on with IR, 5h
for specific tasks. ultrasonic sensors
Actuators in Robotics: Skills in integrating actuators with Hands-on with motors, 5h
robotic systems. Servos
Programming Basics for Robots: Ability to write and Coding tutorial, Arduino 5h
debug simple robot control programs. programming
loT Integration for Robots: Proficiency in developing ~ Hands-on 10T integration

. 10h
loT-enabled robot systems. with robots
Introduction to Robotic Kinematics: Understanding Lecture, Simulation 5h
motion dynamics in robot design. exercises
Mini Robot Prqject. Hands-on experience in small-scale Guided project work 10h
robot construction.
Advanced Sensors and Feedback: Ability to implement Hands-on with gyros, 5h
closed-loop control in robots. accelerometers
Vision Systems: Skills in integrating vision systems with Lecture, Hands-on with 5h
robots. vision libraries
Large Robot Project Phase 1: Project planning and initial Guided prototyping 10h
prototyping skills. sessions

Large Robot Project Phase 2: Hands-on experience in
deploying a complete robotic system.

Project Presentation: Communication and documentation Peer review, Presentation
skills. session

Final Assessment: Evaluation of overall knowledge and
practical skills.

Implementation and testing 10h
5h

Written test, Practical exam 5h

3h

3h

3h

3h

6h

3h

6h

3h

3h

6h

6h

1h

Participation, Short

oliz CLO1
Practical

Assignment e
Lab Report CLO3

Coding Exercise CLO4

0T Implementation
Test

Quiz, Lab Task CLO®6

CLOS

Project Evaluation CLO7

Feedback System CLO 8
Test
Vision Integration CLOS
Test

Prototype EvaluationCLO 7

Project

Demonstration L
Presentation CLO 9
Assessment

Comprehensive CLO 1-9

Evaluation

LAB EXPERIMENTS

LAB EXPERIMENT 1

Determination of maximum and minimum position of link

AIM: To determine the maximum and minimum position of links
M aterials Required:

e A robotic arm or a similar mechanical system with interconnected links

e Position sensors (Ex. Encoders, potentiometers) to measure the position of each link
e A computer or data acquisition to measure the physical position of the links

e A ruler or tape measure to measure the physical position of the links

e A set of weights or other objects to load the system and test its limits

Pre-Experiment Questions

1. What is alink in a mechanism
2. Why is it important to determine the maximum and minimum positions of links in a mechanism?

Procedure:

Install the position sensors on each link of the robotic arm, following the manufacturer's mstructions
or previous lab notes. Make sure that the sensors are calibrated and provide accurate readings.
Connect the position sensors to the computer or data acquisition system and configure the software
to collect and store the position data.

Identify the maximum and minimum range of motion of each link, based on the physical constraints
of the system and the specifications of the sensors. For example, if the robotic arm has six links and
each link can rotate up to 180 degrees, the maximum range of motion of each link would be from -90
to +90 degrees.

Start with one link and move it slowly from the minimum position to the maximum position, while
recording the position data. Repeat the process a few times to ensure consistency and repeatability of
the measurements.

Plot the position data on a graph, with the position on the y-axis and time or angle on the x-axis.

Identify any trends or patterns in the data, such as non-linearities, oscillations, or saturation points.

6. Repeat the process for all the links of the robotic arm, one by one or in parallel, depending on the
available equipment and resources. Make sure to record the data and analyse it using appropriate
statistical or mathematical tools.

7. Load the system with additional weights or other objects to test its limits and see how it behaves
under different loads. Repeat the measurements and analysis as before, and compare the results to
the unloaded case.

8. Evaluate the accuracy and precision of the measurements and the limitations of the experimental
setup. Consider possible sources of error or uncertainty, such as sensor noise, measurement drift, or

mechanical hysteresis, and try to minimize or correct for them.

Formula:

Calculate the maximum and minimum positions of each link relative to the reference link using the

following formulae:

e Maximum Position = length pflink x sin (‘angle between links)
e Minimum Position = length pflink x sin (180-angle between links)
Results:

The laboratory experiment should provide a quantitative and qualitative assessment of the maximum
and minimum position of the lnks of the mechanical system under study. The position data can be
used to calculate the range of motion, the velocity and acceleration profiles, and other relevant
parameters of the system. The loaded tests can also reveal the dynamic behaviour and the robustness
of the system under various operating conditions. The results can be compared to the theoretical
models or simulations of the system, if available, or used to improve the design and performance of

the system in practice.

Post-Experiment Questions:

1. What are the materials required to determine the maximum and minimum positions of links in

a mechanism
2. How do you calculate the maximum and minimum positions of a link

3. What is the purpose of creating a graph of the maximum and mmimum positions of each lin

LAB EXPERIMENT 2

Verification of transformation (position and orientation) with respect to gripper
and world coordinate system

Aim

To verify the transformation (position and orientation) with respect to gripper and world coordinate
system

Equipment Required:

e Robot arm with a gripper
e Markers
e (Camera System

e Computer with control software and computer vision software

Pre-experiment Questions

1. What is the purpose of this experiment?
2. What are the potential applications of this experiment in robotics?

3. What equipment is required for this experiment?

Procedure:

Set up the robot arm in the laboratory, with the gripper attached to the end effector.
Place the markers at known positions in the laboratory workspace. These markers should be visible
to the robot's camera system.
. Use the robot's control software to move the gripper to various positions and orientations in the
workspace, recording the position and orientation of the gripper for each movement.
. Use the robot's camera system to capture images of the markers in the workspace, and use computer
vision techniques to calculate the position and orientation of the markers in the gripper's coordinate

system.

Use the recorded gripper positions and orientations, along with the marker positions and orientations
in the gripper's coordinate system, to calculate the transformation matrix between the gripper and the
world coordinate systems.

Verify the accuracy of the transformation matrix by comparing the calculated positions and
orientations of the markers in the world coordinate system to their known positions.

Repeat the experiment for different gripper positions and orientations to test the robustness of the
transformation matrix.

Finally, use the verified transformation matrix to program the robot arm to perform various tasks,

such as picking up and moving objects in the workspace

RESULT:

Thus we verified the transformation (position and orientation) with respect to gripper and world
coordinate system

Post- Experiment Questions

1. What are markers and why are they used in this experiment?

2. How do you calculate the transformation matrix between the gripper and the world
coordinate systems?

3. How do you verify the accuracy of the transformation matrix?
4. What is the significance of testing the robustness of the transformation matrix?

5. How can the verified transformation matrix be used in programming the robot arm?

LAB EXPERIMENT 3

Estimation of accuracy, repeatability and resolution
AIM:

To determine estimation of accuracy, repeatability and resolution

Equipment required:

e Measurement instrument (e.g. ruler, caliper, scale)
e Representative samples of the measurement variable
e Spreadsheet or data analysis tool
Pre-Experiment Questions
What is the purpose of this experiment?
What are measurement variables and why are they important in this experiment?
What equipment is required for this experiment?

Procedure:

e Setup the experimental apparatus in the laboratory.

e Define the measurement variables that will be used to estimate accuracy, repeatability, and
resolution.

e Select a representative set of measurement points that span the range of values of the
variables.

e Make measurements at each of the selected measurement points, using a precise
measurement instrument.

e Repeat the measurements at each point multiple times to estimate repeatability.

e Compare the measured values to the true values, if known, or to a reference standard to
estimate accuracy.

e Determine the resolution by measuring the smallest change in the variable that can be
detected by the measurement instrument.

e Analyze the measurement data to calculate the accuracy, repeatability, and resolution.

Theory:

e Experimental Apparatus: The experimental apparatus should be designed to be as precise
and accurate as possible for the given measurement variables. For example, if measuring the
length of an object, a high-precision ruler or caliper should be used.

e Measurement Variables: The measurement variables should be carefully selected to

represent the critical aspects of the experiment. For example, in a material strength test, the
measurement variables may include tensile strength, yield strength, and fracture toughness.
Measurement Points: Select measurement points that span the range of values of the
variables to get a representative estimate of accuracy, repeatability, and resolution.
Measurement: Make measurements at each of the selected measurement points, using a
precise measurement mstrument. Record the measured values in a spread sheet or data
analysis tool.

Repeatability: Repeat the measurements at each point multiple times to estimate
repeatability. Calculate the mean and standard deviation of each set of measurements.
Accuracy: Compare the measured values to the true values, if known, or to a reference
standard to estimate accuracy. Calculate the difference between the measured value and the
true/reference value.

Resolution: Determine the resolution by measuring the smallest change in the variable that
can be detected by the measurement mstrument. This can be done by gradually increasing or
decreasing the value of the variable until a change is no longer detected.

Data Analysis: Analyze the measurement data to calculate the accuracy, repeatability, and
resolution. Calculate the mean and standard deviation of the measurements, and compare
them to the true/reference values. Calculate the smallest detectable change in the variable to
estimate resolution.

RESULT:

Thus we determined the estimation of accuracy, repeatability and resolution

Post- Experiment Questions

1. How do you select the representative set of measurement samples?

2.

3
4.
5

What is repeatability and how is it estimated in this experiment?

What is accuracy and how is it estimated in this experiment?

What is resolution and how is it determined in this experiment?

How do you analyze the measurement data to calculate the accuracy, repeatability, and
resolution?

What are the potential sources of error in this experiment?

How can the results of this experiment be used to improve the accuracy and precision of

future measurements in the laboratory

LAB EXPERIMENT 4

Robot Programming and simulation for pick and place
AIM:

To do the Robot Programming and simulation for pick and place

Materials Required:

Ardumo UNO or equivalent

Servo motors (2 or more)

Ultrasonic sensor

Breadboard and jumper wires

USB cable

Computer with Arduino IDE software installed

Pre-Experiment Questions

1. What is the purpose of the Servo library in this code?
2. What is the purpose of the buttonPin variable in this code?
3. What is the purpose of the motorPin variable i this code?

Procedure:
Step 1: Build the robot arm

Build the robot arm using servo motors and other materials.

Connect the servo motors to the Arduino UNO board and make sure they are properly mounted.

Step 2: Connect the ultrasonic sensor

Connect the ultrasonic sensor to the breadboard and Arduino board.

Connect the power, ground, and signal pins of the sensor to the appropriate pins on the board.
Step 3: Program the Arduino

Open the Arduino IDE software on your computer.

Write a code to control the robot arm and ultrasonic sensor.

The code should instruct the robot arm to move in a certain direction when the ultrasonic sensor
detects an object at a certain distance.

Use the Servo library to control the servo motors and the NewPing library to read the ultrasonic
sensor.

Verify and upload the code to the Arduino board.
Step 4: Test the robot arm

Power up the Arduino board and run the program.
Test the robot arm by placing objects within the range of the ultrasonic sensor and observing how it
responds.
You can adjust the code to make the robot arm move in a certain way depending on the position of
the object.
Step S: Simulate the robot arm
To simulate the robot arm, you can use a software tool like Tinkercad or SolidWorks.
Create a virtual model of the robot arm and connect it to a virtual Arduino board.
Write a code to control the virtual robot arm and simulate its movement based on the inputs from the
virtual ultrasonic sensor.
Test and refine the code until the virtual robot arm is able to perform the desired tasks.
Code using Arduino:
#include <Servo.h>
Servo servoX;
Servo servoY;
const int buttonPin = 2;
const int servoXPin =9;
const int servoYPin = 10;
const int motorPin = 3;
mt buttonState = 0;
void setup() {
pnMode(buttonPin, INPUT);
pinMode(motorPin, OUTPUT);

servoX.attach(servo XPin);

servoY .attach(servo YPin);
}
void loop() {

buttonState = digitalRead(buttonPin);

if (buttonState == HIGH) {
// move to pick up position
servoX.write(90);
servoY.write(45);
delay(1000);
// activate motor to pick up object
digitalWrite(motorPin, HIGH);
delay(500);
digitalWrite(motorPin, LOW);
delay(500);
// move to drop off position
servoX.write(0);
servoY.write(90);
delay(1000);
// activate motor to drop off object
digitaIWrite(motorPin, HIGH);
delay(500);
digitaIWrite(motorPin, LOW);
delay(500);

}

j
RESULT:

Thus we completed the Robot Programming and simulation for pick and place

Post-Experiment Questions

1. What is the purpose of the delay function in this code? Can it be replaced with other
functions?

2. How would you modify this code to pick up and drop off objects at different position

LAB EXPERIMENT 5

Robot Programming and simulation for colour identification
AIM: To do the robot programming and simulation for colour identification

Connecting the Hardware:

Install the Arduino Nano at Breadboard
Connect the Nano 5V output and GND at both Power Rails
Connect the TSC3200 Sensor as bellow:

e SO0 ==>Nano pin D4

e S1==>Nano pin D5

e S2==>Nano pin D6

e S3 ==>Nano pin D7

e OUT ==> Nano Pin DS

e EN==>GND

e VCC==>+5V

e GND==>GND

4. Connect the 12C LCD 2/16 Serial Display:
e SDA ==> Nano Pin A4

e SCL==>Nano Pin A5

W=

Pre-Experiment Questions

1. What is an RGB color sensor and how does it work
2. How does the Adafiuit RGBLCDShield library work in Ardumno

3. Can you explain how the program controls the LED based on the color detected by the sensor

Arduino Code:

The first thing to define is the frequency scaling as defined at the table showed above. Pins SO and
S1 are used for that. Scaling the output frequency is useful to optimize the sensor readings for
various frequency counters or microcontrollers. We will set SO and S1, both in HIGH (100%):

digitaIWrite(sO,HIGH);
digitalWrite(s1,HIGH);

Next thing to do is to select the color to be read by the photodiode (Red, Green, or Blue), we use the
control pins S2 and S3 for that. As the photodiodes are connected in parallel, setting the S2 and S3

LOW and HIGH in different combinations allows you to select different photodiodes, as showed at
above table.

digitalWrite(s2, LOW);

digitalWrite(s3, LOW);

red = pulseIn(outPin, LOW); // Reading RED component of color
digitalWrite(s2, HIGH);

digitalWrite(s3, HIGH);

grn = pulseln(outPin, LOW); // Reading GREEN component of color
digitalWrite(s2, LOW);

digitalWrite(s3, HIGH);

blu = pulseIn(outPin, LOW); // Reading BLUE component of color

On the final code, we will read a few times each one of the RGB components and take an average, so
we can reduce the error if one of the readings is bad.

Once we have the 3 components (RGB), we must define what color is that. The way to do it is to

previously calibrate the project. You can use a known colored test paper or object and read the 3
components generated.

void getColor()
{
readRGB();

if (red >8 &&red<18 && gm> 9&& gm <19 && blu >8 && blu <16) color =
"WHITE",

else if (red > 80 && red < 125 && gm > 90 && grn < 125 && blu > 80 && blu < 125)
color = "BLACK";

else if (red > 12 && red <30 && gm >40 && g <70 && blu >33 && blu <70) color
— HREDH;

else if (red > 50 && red <95 && gm >35 && gmn <70 && blu > 45 && blu < 85) color
="GREEN";

else if (red > 10 && red <20 && gm > 10 && gm <25 && blu > 20 && blu <38) color
="YELLOW",

else if (red > 65 && red < 125 && gm > 65 && grm <115 && blu > 32 && blu < 65)
color = "BLUE";

else color ="NO_COLOR";

}

Here 6 colours are predefined: White, Black, Red, Green, Yellow, and Blue. As the ambient light
goes down, the parameters tend to go higher.

Inside the loop(), it is defined to display the readings at LCD each 1 second.

https://mjrobot.org/arduino-color-detection/

In simple we can do this method using Arduino and the Tinkercad simulation tool

e First, set up the circuit on Tinkercad by placing an RGB color sensor and an LED on the

breadboard, connecting them to the Arduino as shown in the following diagram

e Next, open the Arduino IDE and upload the following code to the Arduino board
Arduino Code

// Libraries
#include <Wire.h>
#include <Adafiuit RGBLCDShield.h>
#include <Adafruit ColorSensor.h>
// Initialize the LCD
Adafruit RGBLCDShield led = Adafruit RGBLCDShield();
// Initialize the color sensor
Adafruit ColorSensor colorSensor = Adafiuit ColorSensor();
void setup() {
// Initialize the LCD
led.begin(16, 2);
lcd.setBacklight(255, 255, 255);

// Initialize the color sensor

colorSensor.begin();
}
void loop() {
// Read the color from the sensor
uintl6 t red, green, blue;
colorSensor.getColor(&red, &green, &blue);
// Convert the color to a string and display it on the LCD
char colorString[16];
sprintf{colorString, "#%02x%02x%02x", red /256, green /256, blue / 256);
led.clear();
led.setCursor(0, 0);
led.print("Color: ");
led.print(colorString);
// Control the LED based on the color
if (red > blue && red > green) {
// Red
analogWrite(3, 255);
analogWrite(5, 0);
analogWrite(6, 0);
} else if (green > red && green > blue) {
/I Green
analogWrite(3, 0);
analogWrite(5, 255);
analogWrite(6, 0);
} else {
// Blue
analogWrite(3, 0);
analogWrite(5, 0);
analogWrite(6, 255);
}
// Delay for a short time

delay(100);
h

RESULT:

Hence we have done the robot programming and simulation for colour identification

Post-Experiment Questions:

1. How would you modify the code to detect and display the intensity of each color (red, green,

and blue) separately?

2. How would you modify the circuit to add additional LEDs that light up for different colors?

LAB EXPERIMENT 6

Robot Programming and simulation for shape identification

AIM: To do the robot programming and simulation for shape identification

1. First, set up the circuit on Tinkercad by placing an ultrasonic sensor and three LEDs on the
breadboard, connecting them to the Arduino as shown in the following diagram:

2. Next, open the Arduino IDE and upload the following code to the Arduino board

Pre-Experiment Questions

1. What is an ultrasonic sensor and how does it work?

2. How does the Servo library work in Arduino?

Arduino code:
// Libraries
#include <Servo.h>
// Inttialize the servo
Servo servo;
// Initialize the LED pins
const int LED 1 PIN =2;
const int LED 2 PIN =3;
const nt LED 3 PIN =4;
// Inttialize the ultrasonic sensor pins
const int TRIGGER PIN =5;
const int ECHO_PIN = 6;
void setup() {

// Inttialize the servo

servo.attach(9);

Il Tnitiali7e the T ED ninc

pinMode(LED 1 PIN, OUTPUT);
pinMode(LED 2 PIN, OUTPUT);
pinMode(LED 3 PIN, OUTPUT);

// Inttialize the ultrasonic sensor pins
pinMode(TRIGGER _PIN, OUTPUT);
pinMode(ECHO_PIN, INPUT);

// Inttialize the serial communication
Serial.begin(9600);

}
void loop() {

// Move the servo to scan the area

for (int angle = 0; angle <= 180; angle +=10) {
servo.write(angle);
delay(100);

// Check the distance to the nearest object
long duration, distance;
digtalWrite(TRIGGER PIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIGGER PIN, HIGH);
delayMicroseconds(10);
digtalWrite(TRIGGER PIN, LOW);
duration = pulseIn(ECHO_ PIN, HIGH);
distance = duration /58.2;

// 1dentify the shape based on the distance

if (distance > 0 && distance <=35) {
/I Circle
digitalWrite(LED 1 PIN, HIGH);
digitalWrite(LED 2 PIN, LOW);
digitalWrite(LED 3 PIN, LOW);
Serial.println("Circle detected.");
delay(500);

} else if (distance > 5 && distance <= 10) {

/I Square
digitalWrite(LED 1 PIN, LOW);
digitalWrite(LED 2 PIN, HIGH);
digitalWrite(LED 3 PIN, LOW);
Serial.printIn("Square detected.");
delay(500);

} else if (distance > 10 && distance <= 15) {
// Triangle
digitalWrite(LED 1 PIN, LOW);
digitalWrite(LED 2 PIN, LOW);
digitalWrite(LED 3 PIN, HIGH);
Serial.println("Triangle detected.");
delay(500);

} else {

// No shape detected
digitalWrite(LED 1 PIN, LOW);
digitalWrite(LED 2 PIN, LOW);
digitalWrite(LED 3 PIN, LOW);
Serial.println("No shape detected.");
delay(500);

b
b

Finally, run the simulation on Tinkercad and test the program by placing different shaped objects in
front of the ultrasonic sensor. The LEDs should light up to indicate the detected shape and the serial
monitor should display the shape name.

#include <Wire.h>

#include <Adafruit Sensor.h>

#include <Adafiuit HCSR04.h>

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int pos = 0; // variable to store the servo position

#define trigPin 13 // define the pins for the ultrasonic sensor

#define echoPin 12

Adafruit HCSR04 us = Adafruit HCSRO4(trigPin, echoPin); // create object for ultrasonic sensor

mt dist; // variable to store the distance measured by the sensor
void setup() {
Serial begin(9600); // initialize serial communication at 9600 baud
myservo.attach(9); // attach the servo on pin 9 to the servo object

}
void loop() {

pos = 90; // set the initial position of the servo to 90 degrees (facing forward)
myservo.write(pos); // move the servo to the mitial position
delay(1000); // watit for the servo to reach the position

dist = us.ping_cm(); // measure the distance using the ultrasonic sensor
Serial.print("Distance: ");

Serial.printin(dist); // print the distance to the serial monitor
if (dist < 10) {// if an object is detected within 10 cm

pos = 0; // move the servo to the left (0 degrees)

myservo.write(pos);

delay(1000);

dist = us.ping cm(); // measure the distance again
Serial.print("Distance: ");

Serial.println(dist);

if (dist < 10) {// if an object is still detected within 10 cm

Serial.printIn("Square"); // identify the shape as a square

} else {

Serial. println("Triangle"); // identify the shape as a triangle
h
} else {
pos = 180; // move the servo to the right (180 degrees)
myservo.write(pos);
delay(1000);
dist = us.ping_cm(); // measure the distance again
Serial.print("Distance: ");

Serial nDrintin(dist)

if (dist < 10) {// if an object is detected within 10 cm
Serial.printIn("Circle"); // identify the shape as a circle

} else {
Serial.printIn("Unknown shape"); // identify the shape as unknown

}

This program uses an ultrasonic sensor to measure the distance between the sensor and an object in
front of it. A servo motor is used to rotate the sensor to different positions. If an object is detected
within 10 cm of the sensor, the servo moves to the left or right to get a better view of the object, and
the distance is measured again. Based on the distance measurements, the program identifies the

shape of the object as a square, triangle, circle, or unknown.
RESULT: Thus we have done the robot programming and simulation for shape identification
Post- Experiment Questions

1. Can you explain how the program identifies the shape based on the distance measured by the

ultrasonic sensor?
2. How would you modify the code to detect additional shapes?

3. How would you modify the circuit to add a buzzer that sounds

LAB EXPERIMENT 7

Robot Programming and simulation for machining (cutting, welding)
AIM:

To do the Robot Programming and simulation for machining (cutting, welding)

Equipment Required

Ardumo UNO board

Motor driver shield

Stepper motors (two or more)

End effector (cutting or welding tool)
Computer with Arduino IDE installed
Breadboard and jumper wires

Power supply (for motors and Arduino)

Pre-Experiment Questions

1. What is the purpose of the Robot Programming and Simulation for Machining (Cutting,
Welding) laboratory experiment using Arduino?

2. What components are required to build the robotic system?

Procedure

. Design the robotic system: The first step is to design the robotic system that will be used for

machining. The design should include the number and type of motors required, the end effector
(cuttng or welding tool), and any other necessary components.
. Build the robotic system: After designing the robotic system, the next step is to build it. This

mvolves assembling the components and wiring them up to the Arduino board.

. Program the Arduino board: The next step is to program the Ardumno board using the Arduino IDE.

The program should include the control algorithm for the robotic system, which will be used to
control the motors and the end effector. The program should also include any necessary sensor

mputs and outputs.

Test the robotic system: After programming the Arduino board, the next step is to test the robotic
system. This nvolves running the program and observing the behaviour of the robotic system. Any

issues that arise during testing should be identified and addressed.

. Perform machining tasks: Once the robotic system is working correctly, the next step is to perform

machining tasks such as cutting and welding. The end effector should be programmed to move in a

specific pattern, which will be used to cut or weld the work piece.

Theory:

Choose a robot platform: There are several robot platforms available for machning and welding.
You can choose from industrial robots, hobby robots, or even build your own robot from scratch.
Ardumo is a popular platform for hobby robotics, and there are several kits available that can be
used for this project.

Choose a programming language: There are several programming languages that can be used to
program a robot, including C++, Python, and Java. Ardumo uses a simplified version of C++, which
makes it an ideal platform for beginners. You can also use graphical programming languages like
Scratch or Blockly to program the robot.

. Install the necessary software: You will need to install the Arduino IDE on your computer, which is
a free software that allows you to write and upload code to the Arduino board. You will also need to
mstall a simulation software like RoboDK, which allows you to simulate the robot movements and
check for any errors before running the program on the actual robot.

. Write the program: Once you have chosen your programming language and installed the necessary
software, you can start writing the program. You will need to define the robot movements, such as
the cutting or welding path, and the parameters such as speed, acceleration, and direction. You can
also add sensors to detect any obstacles or errors during the process.

Test the program: Before running the program on the actual robot, you should test it on the
simulation software to ensure that it is working correctly. Make any necessary adjustments to the

program and repeat the testing until it is error-free.

. Run the program on the robot: Once you are satisfied with the program, you can upload it to the

Ardumo board and run it on the actual robot. Make sure that the robot is calibrated correctly and all

the safety precautions are in place before running the program.

7. Evaluate the results: After running the program, you should evaluate the results to see if it meets the

desired outcome. You can also make any necessary adjustments to the program for future use.

Arduino Code:

#include <AccelStepper.h> // Import the AccelStepper library
// Define the motor pins

#define motorPinl 8

#define motorPn2 9

#define motorPin3 10

#define motorPind 11

// Define the end effector pin
#define effectorPin 12
/I Create the AccelStepper objects for the X and Y axis
AccelStepper x_axis(AccelStepper::FULLAWIRE, motorPinl, motorPin2, motorPin3, motorPin4);
AccelStepper y_axis(AccelStepper::FULLAWIRE, motorPinl, motorPin2, motorPin3, motorPin4);
// Define the end effector object
Servo effector;
// Define the position variables
mt xPos = 0;
mt yPos = 0;
void setup() {
// Set the motor speeds and acceleration
x_axis.setMaxSpeed(2000);
x_axis.setAcceleration(1000);
y_axis.setMaxSpeed(2000);
y_axis.setAcceleration(1000);
/I Attach the end effector to the pin

effector.attach(effectorPin);

}

void loop() {
// Move the robot to the desired position
x_axis.moveTo(xPos);

y_axis.moveTo(yPos);

/I Check if the motors have reached their target position

if (x_axis.distanceToGo() == 0 && y_axis.distanceToGo() == 0) {
// Perform the machining task (in this case, turn on the end effector)
effector.write(90);

}

// Increment the position variables (for a simple example)

xPos +=100;

yPos +=100;

// Delay to allow the motors to move

delay(1000);
}

This code uses the AccelStepper library to control the stepper motors for the X and Y axis. The end

effector is controlled using the Servo library. The robot is moved to a desired position by setting the

target position for each motor using the moveTo() function. Once the motors have reached their

target position, the end effector is activated by setting its angle to 90 using the write() function. In

this example, the robot is programmed to increment its position variables (xPos and yPos) by 100

after each machining task, but these values can be changed to perform more complex machining

tasks
RESULTS:

This we have done the Robot Programming and simulation for machining (cutting, welding)

Post- Experiment Questions
1. What is the control algorithm for the robotic system?
2. What is the purpose of testing the robotic system?

3. What are some machining tasks that can be performed using the robotic system?

LAB EXPERIMENT 8
Robot Programming and simulation for writing practice

AIM:

To do the Robot Programming and simulation for writing practice
Equipment Required

1. Ardumo board

2. USB cable

3. Breadboard

4. Jumper wires

5. Servo motor

6. Writing instrument (e.g. pen, pencil)

7. Autodesk Fusion 360 or MATLAB Simulink (optional for simulation)

Pre- Experiment Questions:
1. What is the purpose of this laboratory experiment
2. What is the importance of programming and simulation in robotics

3. What is the function of the Servo library in this experiment
The Arduino board, USB cable, breadboard, and jumper wires are required to connect the servo
motor to the Arduino and program it using the Arduino IDE. The servo motor is used to control the
writing instrument (e.g. pen or pencil) to perform writing tasks. Autodesk Fusion 360 or MATLAB
Simulink can be used for simulation purposes to visualize and test the robot control algorithm before
implementing it on a physical robot.
Arduino code:

#include <Servo.h> // Import the Servo library

// Define the servo pin
#define servoPin 9
// Create the Servo object

Servo servo;

// Define the position variables

nt angle = 0;

void setup() {
/I Attach the servo to the pin
servo.attach(servoPin);

}

void loop() {
// Move the servo to the desired angle
servo.write(angle);
// Increment the angle variable (for a simple example)
angle += 10;
// Delay to allow the servo to move

delay(500);
}

This code uses the Servo library to control the servo motor for writing. The robot is moved to a
desired angle by setting the angle using the write() function. In this example, the robot is
programmed to increment its angle variable by 10 after each writing task, but these values can be
changed to perform more complex writing tasks.

In addition to the programming code, you can also create a simulation environment using a software
like Autodesk Fusion 360 or MATLAB Simulink to visualize and test your robot control algorithm
before implementing it on a physical robot.

RESULTS:

Thus we have done the Robot Programming and simulation for writing practice
Post-Experiment Questions

1. How does the write() function control the servo motor
2. How can this code be modified to perform more complex writing tasks

3. What is the advantage of simulating the robot control algorithm before implementing it on a
physical robot

4. What are the limitations of using Arduino for robotics

A T o

LAB EXPERIMENT 9

Robot Programming and simulation for any industrial process
(Packaging, Assembly)
AIM:

To do the Robot Programming and simulation for any industrial process
(Packaging, Assembly)

Equipment Required

Ardumo board

USB cable

Breadboard

Jumper wires

Two Servo motors

Industrial equipment (e.g. packaging or assembly parts)

Autodesk Fusion 360 or MATLAB Simulink (optional for simulation)

Pre- Experiment Questions:

What is the purpose of this laboratory experiment?

How can robots be used in industrial processes such as packaging and assembly?

How does the Servo library in Arduino help control the servo motors used in this experiment?

The Arduino board, USB cable, breadboard, and jumper wires are required to connect the servo
motors to the Ardumo and program it using the Arduino IDE. The two servo motors are used to
control the industrial equipment (e.g packaging or assembly parts) to perform industrial processes.
Autodesk Fusion 360 or MATLAB Simulink can be used for simulation purposes to visualize and

test the robot control algorithm before implementing it on a physical robot.

Arduino Code:

#include <Servo.h> // Import the Servo library

// Define the servo pins

#define servoPmnl 9

#define servoPn2 10

// Create the Servo objects

Servo servol;

Servo servo2;

// Define the position variables

int anglel =0;

mt angle2 = 0;

void setup() {
/I Attach the servos to the pins
servol.attach(servoPinl);
servo2.attach(servoPin2);

}

void loop() {
// Move the servos to the desired angles
servol.write(anglel);
servo2.write(angle2);

// Increment the angle variables (for a simple example)
anglel +=10;
angle2 -=10;

// Delay to allow the servos to move

delay(500);
}

This code uses the Servo library to control two servo motors for industrial processes such as
packaging or assembly. The robot is moved to desired angles by setting the angle using the write()
function. In this example, the robot is programmed to increment its first angle variable by 10 and
decrement its second angle variable by 10 after each cycle, but these values can be changed to

perform more complex industrial processes.

In addition to the programming code, you can also create a simulation environment using a software
like Autodesk Fusion 360 or MATLAB Simulink to visualize and test your robot control algorithm
before implementing it on a physical robot.

RESULTS:

Thus we have done the Robot Programming and simulation for any industrial process

(Packaging, Assembly)

Post-Experiment Questions

1. How does the write() function control the servo motors in this experiment?

2. How can the code be modified to perform different industrial processes?

3. What are the advantages of simulating the robot control algorithm before mmplementing it on
a physical robot?

4. What are the limitations of using Arduino for industrial robotics?

5. How can sensors be used in conjunction with this code to improve the accuracy and
efficiency of the industrial process being performed?

6. What safety measures should be taken when working with industrial robots in a laboratory or
ndustrial setting?

7. What is the future of industrial robotics and automation, and how might it impact the

workforce?

b=

AIM:

LAB EXPERIMENT 10

Robot Programming and simulation for multi process

To do the Robot Programming and simulation for multi process

Equipment Required

[]

[]

Arduino board

USB cable

Breadboard

Jumper wires

Two Servo motors

Industrial equipment (e.g. packaging or assembly parts)

Autodesk Fusion 360 or MATLAB Simulink (optional for simulation)

Pre-Experiment Questions

What is the purpose of this laboratory experiment?

How can robots be used for multiple processes in industrial automation?

How does the Servo library in Arduino help control the servo motors used in this experiment ?

What safety measures should be taken when working with industrial robots in a laboratory or

industrial setting?

The Arduino board, USB cable, breadboard, and jumper wires are required to connect the servo
motors to the Arduino and program it using the Ardumno IDE. The two servo motors are used to
control the tools / equipment for multiple processes. Autodesk Fusion 360 or MATLAB Simulink

can be used for simulation purposes to visualize and test the robot control algorithm before

implementing it on a physical robot.

Arduino code:

#include <Servo.h> // Import the Servo library
// Define the servo pins

#define servoPinl 9

#define servoPin2 10

/I Create the Servo objects

Servo servol;

Servo servo2;
// Define the position variables

nt anglel =0;

mt angle2 = 0;

void setup() {
/I Attach the servos to the pins
servol.attach(servoPinl);
servo2.attach(servoPin2);

}

void loop() {
// Move the servos to the desired angles
servol.write(anglel);
servo2.write(angle2);

// Increment the angle variables (for a simple example)
anglel +=10;

angle2 -=10;

// Delay to allow the servos to move

delay(500);

// Switch to a new process after a certain number of cycles
if (anglel == 180 && angle2 == -180) {

anglel =0;
angle2 =0;
delay(1000);
j
}

This code uses the Servo library to control two servo motors for multiple processes. The robot is
moved to desired angles by setting the angle using the write() function. In this example, the robot is
programmed to increment its first angle variable by 10 and decrement its second angle variable by
10 after each cycle until it reaches 180 and -180 respectively, at which pomt it switches to a new

process by resetting the angle variables to 0 and waiting for 1 second.

In addition to the programming code, you can also create a simulation environment using a software
like Autodesk Fusion 360 or MATLAB Simulink to visualize and test your robot control algorithm
before implementing it on a physical robot.

RESULTS:

Thus we have done the Robot Programming and simulation for multi process

	6th Robotics Level-1.pdf
	Slide 1: Robotics Fundamentals (Level-1)
	Slide 2: Robotics Fundamentals (Level-1)
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5: Course Plan

	1

